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Abstract. A method for forecasting very short-term rainfall
to detect potentially hazardous convective cloud that pro-
duces heavy local rainfall was developed using actual vol-
umetric C-band polarimetric radar data. Because the rain-
fall estimation algorithm used in this method removed the
effect of ice particles based on polarimetric measurements,
it was immune to the high reflectivity associated with hail.
The reliability of the algorithm was confirmed by comparing
the rainfall rate estimated from the polarimetric radar mea-
surements at the lowest elevation angle with that obtained
from optical disdrometers on the ground. The rainfall rate
estimated from polarimetric data agreed well with the results
obtained from the disdrometers, and was much more reliable
than results derived from reflectivity alone.

Two small cumulus cells were analyzed, one of which de-
veloped and later produced heavy rainfall, whereas the other
did not. Observations made by polarimetric radar with a vol-
umetric scan revealed that a high vertical maximum intensity
of rainfall rate and a vertical area of enhanced differential
reflectivity extending above the freezing level, often termed
a highZDR column, were clearly formed about 10 min prior
to the onset of heavy rainfall on the ground. The onset time
of the heavy rainfall could be estimated in advance from the
polarimetric data, which agreed fairly well with observations.
These polarimetric characteristics were not observed for the
cumulus cell that did not produce heavy rainfall. The results
suggest that both the vertical maximum intensity of the rain-
fall rate and a highZDR column, estimated from polarimetric
measurements, can be used to identify potentially hazardous
clouds. Furthermore, this study shows that polarimetric radar
measurements with high spatial and temporal resolutions are
invaluable for disaster reduction.

1 Introduction

Heavy convective rainfalls, in conjunction with accompa-
nying phenomena such as rainstorms, hail, and flash flood-
ing, have an immediate and often devastating impact on a
broad range of human activities, especially in urban areas.
Due to the material damage and loss of life associated with
such events, a number of research projects have been initi-
ated to study the meteorological causes and hydrological ef-
fects of rainfall events associated with flash floods (e.g. Maki
et al., 2012; Chandrasekar and Philips, 2012; Borga et al.,
2011). One of the main challenges posed by flash floods is
the extremely rapid response time of many of catchments,
which can be as short as 10 min for small urban watersheds
in mountainous environments (Brauer et al., 2011). An exten-
sion of several minutes’ lead time could improve very short-
term forecasting (nowcasting) and allow for early warnings
of heavy rain and flash flooding, thereby mitigating most of
the damage and loss of life.

The requirement for short response times makes rainfall
nowcasts from radar-based short-term precipitation forecast-
ing more valuable than numerical weather prediction for is-
suing operational early warning services. Numerical mod-
els, including the radar-data assimilation method (Kawa-
bata et al., 2011 and references therein), remain unsuit-
able for hydrological needs in terms of the necessary spa-
tial and temporal resolution and in terms of the computa-
tion time for the small space and timescales that correspond
to flash floods (e.g. Boudevillain et al., 2006; Liguori and
Rico-Ramirez, 2012).
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Radar-based short-term precipitation forecasting has been
addressed by various approaches. Rainfall estimation using
radar has traditionally been accomplished by relating the re-
flectivity factor (ZH) to the rainfall rate through a so-called
Z–R (hereafterR(ZH)) relation. The widely used methods
are based on advection, and they extrapolate the propaga-
tion of rain regions derived from radar echoes (e.g. Li et
al., 1995). Ruzanski and Chandrasekar (2012) suggested that
radar-based advection methods in Lagrangian space are use-
ful for up to about 20 min for precipitation patterns even
at the microalpha (0.2–2 km) scale. Some methods track the
displacement of individual rain cells and extrapolate their ve-
locity, whereas others use characteristics such as shape, in-
tensity, and size (Johnson et al., 1998; Lakshmanan et al.,
2006; Ruzanski et al., 2011). Additionally, Seed (2005) broke
the rainfall pattern into a series of patterns of different-sized
areas of rain, treating each area separately. The performance
of these methods, however, depends on the precipitation type,
with much better results for stratiform than for convective
rain (e.g. Wilson et al., 2004), despite heavy rainfall occur-
ring more often from the latter (Boudevillain et al., 2006).

The lesser success in predicting convective rain is because
most radar-based advection methods do not take the verti-
cal advection of rain into account despite the rapid vertical
development of convective clouds. Requirements for the es-
timation of vertical advection may include vertical profiles
of the terminal velocity of raindrops, drop-size distribution
(DSD), and/or rainfall rate, although all of these terms may
change with time because of the nature of raindrops, includ-
ing break up and collision (e.g. Rutledge and Hobbs, 1984;
Kobayashi and Adachi, 2001). By assuming a realistic ver-
tical profile of DSD, Boudevillain and Andrieu (2003) esti-
mated the accuracy of vertically integrated liquid water con-
tent (hereafter referred to as VIL) for radar measurements.

VIL represents the atmospheric water content that can be
deduced from volumetric scanning of the reflectivity field
measured by classical weather radars, and it indicates the
precipitation water content (Greene and Clark, 1972). VIL
has been used mainly for severe storm warning and quan-
titative rainfall forecasting (e.g. Lakshmanan et al., 2006).
Boudevillain et al. (2006) evaluated very short-term rainfall
forecast models by considering vertical advection based on
VIL using actual radar data. Their results demonstrated that
although VIL could improve advection rainfall forecasting
methods, the performance was still insufficient for practical
applications. This could be because of the low reliability of
R(ZH) methods, especially for convective rainfalls, on which
VIL is based. Other reasons may include the inability of clas-
sical radars to discriminate ice precipitation from liquid pre-
cipitation in the reflectivity field and consequent large errors
in the retrieval of quantitative rainfall forecasting using VIL,
despite the fact that ice precipitation is often associated with
heavy rainfall. Radars with dual-polarized capability could,
however, mitigate the effect of ice particles and obtain better
rainfall estimations.

The efficacy of dual-polarization radar for quantitative
precipitation estimation (QPE) has been demonstrated in a
number of previous studies (see Bringi and Chandrasekar,
2001 for a review). These studies have shown that rainfall re-
trieval using combinations of polarimetric variables have an
advantage over traditionalR(ZH) methods because more in-
formation regarding DSD is available (e.g. Anagnostou et al.,
2004). Furthermore, dual-polarization-based rainfall rate es-
timators can better account for the presence of ice in the sam-
pling volume (e.g. Golestani et al., 1989; Cifelli et al., 2011).
The quality of the retrieved rainfall rate, however, strongly
depends on the reliability of the polarimetric parameters ob-
tained by the radar (Illingworth and Blackman, 2002). One
of the disadvantages of polarimetric measurements is that
it often needs more samplings (∼ 100) than does classical
radar (∼ 30) to observe polarimetric data with sufficiently
high precision, which results in relatively low temporal res-
olution (Bringi and Chandrasekar, 2001; Sachidananda and
Zrnić, 1985, 1987). However, Illingworth (2004) pointed out
that if polarization techniques require longer dwell times, the
poor sampling could negate any increased accuracy of spe-
cific rainfall estimates. Knight (2006) also noted that time
resolution is a critical factor in studies designed to better un-
derstand the early formation of precipitation in cumulus.

For rapid updates, some radars do not make volumetric
scans but restrict polarimetric measurements at low eleva-
tion angles. This observation method is suitable for QPE
on the ground. Additionally, the fact that the magnitude of
most polarimetric variables decreases with the antenna eleva-
tion angle may also promote this elevation restriction. How-
ever, a volumetric scan is essential for very short-term fore-
casts to obtain information regarding the vertical characteris-
tics of convective clouds that produce heavy precipitation.
Moreover, a high time resolution is required to determine
the evolution of convective clouds at the development (cu-
mulus) stage because the duration of this stage is between
10 and 15 min in radar observation (Byers and Braham,
1949). Kumjian et al. (2010) used sector scans to increase the
time resolution of polarimetric measurements for convective
clouds but needed to restrict the size of the observation area.

The practical time resolution and thus the reliability of po-
larimetric measurements can be determined by the co-polar
correlation coefficient at zero lag (ρHV(0)) in rain (Bringi
and Chandrasekar, 2001). Sachidananda and Zrnić (1985)
showed that reliable polarimetric data can be obtained from
50 simultaneous samples whenρHV(0)> 0.995 and the spec-
trum width > 4 m s−1. The value ofρHV(0) measured with
polarimetric radars has been increasing with the advent of
innovative radar technology. Gourley et al. (2006) reported
ρHV(0) peak values in rain better than 0.99 for the Trappes
radar with a sample number of 23 and a time resolution
of 15 min. More recently, Yamauchi et al. (2012) reported
ρHV(0) peak values of 0.998, which implies the use of a
surprisingly reliable radar, as this value is very close to the
theoretical expectation of 0.999 for drops without oscillation
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(Sachidananda and Zrnić, 1985). Additionally, they recorded
this peak value with a sample number of 20, which enabled
volumetric scans with a time resolution of 4 minutes for their
system. Thus, this radar may have the capability to inves-
tigate the evolution of cloud in the development stage, as
is required for very short-term forecasts. In this study, we
propose an approach to diagnose and detect potentially haz-
ardous convective cloud for very short-term forecasting with
rapid-scanning polarimetric radar.

This paper is organized as follows. In Sect. 2 we describe
the instruments and methodology used in the study. The reli-
ability of the method is confirmed by comparing estimations
with disdrometer measurements. In Sect. 3, we present an
overview of the evolution of two convective clouds, one of
which produced heavy rainfall, whereas the other did not. In
Sect. 4, we diagnose convective clouds by analyzing the evo-
lution of the vertical structure, including polarimetric vari-
ables, and demonstrate the ability to detect potentially haz-
ardous convective cloud with rapid-scan polarimetric radar.

2 Instrumentation and data analysis techniques

2.1 MRI C-band polarimetric radar

The Meteorological Research Institute (MRI) advanced C-
band solid-state polarmetric radar (MACS-POL radar) was
installed at the MRI in 2008 and mounted on top of the MRI
building in Tsukuba, Japan. The operating system including
transmitters and receivers is located under the floor of the
building’s radome to reduce signal loss. The radar routinely
collects a full suite of dual-polarization measurements, in-
cluding the reflectivity factor (ZH), differential reflectivity
(ZDR), differential propagation phase (9DP), and correlation
coefficient at zero lag (ρHV(0)). The configuration and op-
erating parameters of the radar are summarized in Table 1.
The precision of observation is enhanced by several standard
measurements including transmitter and receiver calibration.
The radar system was calibrated from data collected dur-
ing weak stratiform rain by use of an auto-calibration tech-
nique (Gourley et al., 2009; Illingworth, 2004; Goddard et
al., 1994) assuming a modified gamma distribution of rain-
drops with the axis ratio proposed by Brandes et al. (2002,
2005). Vertical measurement in rain was used to calibrate the
ZDR measurement (Illingworth, 2004). Through the adoption
of these calibration procedures, the uncertainty in the indi-
vidual range gateZH (ZDR) values was considered to be less
than 0.5 dB (0.1 dB).

This system employs two solid-sate amplifier units to
transmit horizontally and vertically polarized waves. Be-
cause the peak power of the amplifiers was slightly weak,
observations were made with a long pulse to increase the
mean power. A pulse compression technique with a linear
FM chirp was used to increase range resolution. The range
side lobe associated with this technique was suppressed to
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Fig. 1. Distribution of the standard deviation of differential reflec-
tivity (ZDR) for samples collected in stratiform rain by the MRI
C-band polarimetric radar. Signals greater than or equal to the sig-
nal minimum level+20 dBm were used. The peaks measured were
0.26 dB for short-pulse observations (τ = 1 µs) and 0.12 dB for long-
pulse observations (τ = 129 µs), respectively.

less than−48 dB (Yamauchi et al., 2012). Because radar
cannot observe in the vicinity of the antenna in the range
of a long-pulse length, this radar alternatively transmitted
a short and long pulse to cover the blind region associ-
ated with the long-pulse observation. The operating frequen-
cies deployed for the two pulses were separated to avoid
mutual contamination.

The radar is equipped with two receiving channels, which
have nearly identical waveguide runs and operate in paral-
lel, thus enabling the simultaneous transmission and recep-
tion (STAR) mode of polarized signals. Sachidananda and
Zrnić (1985) showed that the precision of differential reflec-
tivity (ZDR) and the differential phase (9DP) measured with
this mode are higher than that of an alternative transmission
scheme when theρHV(0) is very high (> 0.995) and/or the
sampling number is small. Yamauchi et al. (2012) reported
that this radar has peakρHV(0) values of 0.992 for short-
pulse and 0.998 for long-pulse observations, respectively,
with a sample number of 20 deploying the STAR mode in
stratiform rain. Using the measured peak value ofρHV(0)
and sample number of 20, the theoretical measurement errors
for ZDR obtained in the STAR mode were estimated to be
less than 0.2 dB for the short-pulse and 0.1 dB for the long-
pulse observations, respectively, when the spectrum width
was 4 m s−1 (Bringi and Chandrasekar, 2001).

Figure 1 displays the distributions of the standard devia-
tion of ZDR measured in stratiform rain by the MACS-POL
radar with a sample number of 20. An altitude threshold
was imposed to restrict sampling to only liquid hydrome-
teors below the bright band. The data set was limited to
data associated with a9DP less than 10◦ to avoid bias by
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Table 1.Operating characteristics of the MRI C-band polarimetric radar.

Frequency 5370 MHz
Occupied band width < 4.5 MHz
Peak power 3.5 kW (for each channel, simultaneous transmission)
Duty 20 % (Max)
Pulse length 1 µs (range< 20 km) and 129 µs (≥ 20 km) for Elv.< 8◦

1 µs (range< 7.5 km) and 47 µs (≥ 7.5 km) for Elv.≥ 8◦

Pulse compression Linear FM chirp for long-pulse observations
Antenna diameter Parabolic dish,8 = 4 m
Antenna speed 4 rpm for Elv.< 8◦ and 6 rpm for Elv.≥ 8◦ (10 rpm Max.)
Signal minimum < −110 dBm
Antenna gain (H andV ) > 42 dBi
Max cross-polar isolation < −40 dB
Beam width 1.01◦

Azimuth spacing 0.7◦

Transmitter GaAs Power FET
Number of linear sampling 20
Range gate spacing 150 m
PRF 624/780 Hz (Elv.< 8◦) and 936/1170 Hz (Elv.≥ 8◦)
Observation parameters ZH, ZV , ZDR, radial velocity,ρHV (0) and9DP
Manufacture TOSHIBA

attenuation. Additionally, data at least 20 dB larger than the
signal minimum level was used. Nine-gate windows along a
radial were used to compute the standard deviation based on
the analysis proposed by Sugier et al. (2006).

Figure 1 indicates that the standard deviation ofZDR mea-
sured with the MACS-POL radar has a peak value of 0.12 dB
(0.26 dB), with more than 76 % (19 %) of observations less
than or equal to 0.2 dB for long (short) pulses, which is con-
sistent with theoretical values. This suggests that the qual-
ity of the ZDR measured with this radar is suitable for re-
liable quantitative precipitation estimates (QPE), especially
for the long-pulse observations, even with a sample num-
ber of 20, because rainfall rates greater than 10 mm h−1 can
be estimated with an accuracy of 25 % if theZDR measure-
ment error is less than 0.2 dB (e.g. Illingworth, 2004; Illing-
worth and Blackman, 2002). The sample number of 20 cor-
responds to an antenna rotation speed of 4 rpm for observa-
tions with elevation angles less than 8◦ and 6 rpm for eleva-
tion angles greater than 8◦ for the MACS-POL radar with
the operating parameters shown in Table 1. This rotation
speed sequence of the antenna enables the temporal resolu-
tion of the volumetric scans with this system in 4 min with
15 elevation observations.

The scan elevation sequence was 0.5, 1.0, 1.5, 2.1, 2.8,
3.6, 4.8, 0.5, 6.2, 8.0, 10.4, 14.0, 18.0, 23.0 and 30.0◦. Two
observations at an elevation angle of 0.5◦ were made in the
sequence to increase the time resolution near the ground, but
only the first one is used in the analyses of cross sections in
Sect. 4.1 and the vertical maximum intensity of the rainfall
rate in Sect. 4.2. Volumetric scans of polarimetric parameters
enable investigation of the evolution of rainfall rate near the
ground and in the atmosphere. We used the vertical profile

of the rainfall rate to detect potentially hazardous clouds that
produce heavy rainfall, as shown later. The method used to
estimate the rainfall rate from polarimetric parameters and its
reliability are described in the next section. The reliability of
the method was confirmed by comparing the estimated rain-
fall rate from the radar at the lowest elevation angle with that
measured by optical disdrometers (Parsivel) on the ground.
In Appendix A, we evaluate the Parsivel measurements by
comparing them with a co-located weighing rain gauge and
propose a method to increase the reliability of the Parsivel
measurements. Effects of ice precipitation on the estimation
of rainfall rate are discussed in Appendix B.

2.2 Description of the data analysis technique

In polarimetric weather radar systems, relationships between
polarization variables and rainfall of the formR(ZH), R(ZH,
ZDR), R(KDP) andR(KDP, ZDR), have been used to esti-
mate the rainfall rate (see Bringi and Chandrasekar, 2001 for
a review). However, the algorithm presented herein does not
useKDP but relies primarily on theZDR measurements to
estimate the rainfall rate becauseKDP is computed from esti-
mations of a differential propagation phase,8DP in the radial
direction, which can be noisy for small-scale convective cells
with a low rainfall rate during the developmental stage with
which we are concerned (e.g. Sachidananda and Zrnić, 1987;
Chandrasekar et al., 1990; Brandes et al., 2004). Moreover,
estimations of8DP from measurements of differential phase,
9DP at C-band can be unreliable in the presence of large
raindrops because of the effect of the backscatter differential
phase (δco). In practice, it may be difficult even for advanced
techniques including a FIR-based method (e.g. Hubbert and
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Bringi, 1995) to remove the effect ofδco to analyze small-
scale convective cells with a low rainfall rate.

The ZDR measurement has another advantage for detect-
ing active convective cells at the developmental stage. Con-
vections at this stage are often associated with a vertical area
of enhanced differential reflectivity (up to 4–6 dB) with low
reflectivity (usually 35–50 dBZ) above the ambient melting
level, i.e. aZDR column, which is formed by a strong up-
draft (e.g. Brandes et al., 1995; Bringi et al., 1991; Loney
et al., 2002; Scharfenberg et al., 2005; Conway and Zrnić,
1993). EnhancedZDR values and a lowZ imply the pres-
ence of oblate hydrometeors. Aircraft particle measurements
have confirmed that theZDR column is characterized (dom-
inated) by small numbers of large raindrops (Brandes et al.,
1995). Radars that are operated in the C-band, such as the
MACS-POL radar, may have an advantage in observing the
ZDR column because they are more sensitive to large rain-
drops (De≥ 5 mm) than are radars operating at other fre-
quencies (X- and S-bands) due to the Mie scattering res-
onance effect (Fig. 2). The drops within anyZDR column
are either advected into an updraft from elsewhere below the
0◦C level or may grow in situ. TheZDR columns are there-
fore good indicators of regions of updraft in any particular
storm, and the farther above the 0◦C level the column ex-
tends, the more vigorous the updraft becomes (Scharfenberg
et al., 2005). Thus, theZDR column has been used to ana-
lyze severe storms including matricellular storms (Bringi et
al., 1991), supercell storms (Loney et al., 2002), hailstorms
(e.g. Conway and Zrnić, 1993; Hubbert et al., 1998), and tor-
nados (e.g. Ryzhkov et al., 2005). TheZDR column has the
potential to be used to identify potentially hazardous clouds
that generate local heavy rainfall.

In addition toZDR, difference reflectivity (ZDP), proposed
by Golestani et al. (1989), is also used in this algorithm to
estimate the reflectivity-weighted ice fraction observed in the
radar volume. The reflectivity-weighted ice fraction is then
used to remove the effect of ice particles and obtain the rain-
only reflectivity (Bringi and Chandrasekar, 2001; Cifelli et
al., 2011).

The difference reflectivity is defined as

ZDP = 10 log10
(
ζH − ζV

)
, (1)

whereζH and ζV are linear reflectivities for horizontal and
vertical polarization, respectively. TheZDP is insensitive to
ice because ice particles such as randomly oriented hail ap-
pear statistically isotropic (ζ ice

H
≈ ζ ice

V
) (Bringi and Chan-

drasekar, 2001). It is highly correlated with the rain-only
reflectivity, being sensitive only to the oriented oblate rain-
drops (ζ rain

H
> ζ rain

V
), and so it is a good indicator of the pres-

ence of water within the rain–ice mixture. A rain line is de-
veloped by the regression ofZH againstZDP in precipitation
regions that contain rain only. The rain line obtained is then
applied in regions where ice particles may be included. The
difference between the observedZH and the value expected
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Fig. 2. Differential reflectivity (ZDR) as a function of equivol-
umetric sphere diameter (De) at raindrop temperatures of 0 and
30◦C at the S-band (2.725 GHz), C-band (5.370 GHz), and X-band
(9.375 GHz). Results for temperatures of 10 and 20◦C, and iced
raindrops at 0 and−20◦C are also plotted for the C-band.

according to the rain line (1Z in dB) represents the amount
of ice in the reflectivity according to

f =
ζ ice

ζ rain
= 1 − 10−0.1(1Z)

; 1Z ≥ 0dB, (2)

wheref is the ice fraction, and rain-only reflectivity at hori-
zontal polarization can be obtained by

ζ rain
H

= (1 − f )ζH . (3)

The rain line used in the present study was deduced from lo-
cal convective heavy rainfall analyzed in this study at a ma-
ture stage, which is represented as

ZDP = 1.082Zrain
H − 7.089, (4)

with a correlation coefficient of 0.994 (Fig. 3). The statisti-
cal results, including the high correlation coefficient in the
derivation of the rain-line, could reflect the reliability of
the retrieval algorithm including the attenuation correction
scheme described below.

The steps and sequence of equations used in the algorithm
were as follows:

1. For each range profile (or beam) of data, a data mask
was generated based on the standard deviation of9DP
(≤ 12◦) over seven consecutive gates,ρHV (≥ 0.85),
and a signal to noise ratio (SNR≥ 3 dB) to remove
non-meteorological data.
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Fig. 3. Scatter plot of the reflectivity factor (ZH) vs. the differ-
ence reflectivity (ZDP) measured in precipitation regions that con-
tain rain only at the altitudes between 500 m and 4500 m a.g.l. at
03:23 JST on 7 July 2010. The line represents a linear regression
(rain line) as shown in the legend on the bottom with the correlation
coefficient, bias, standard deviation and number of samples.

2. A five-gate running mean was applied to the filtered
9DP in each ray to mitigateδco and obtain8DP.

3. Elevation corrections for the observedZDR and8DP
were applied by use of T-matrix (Mishchenko and
Travis, 1994) calculations based on observed DSD
from the optical disdrometers (Fig. 4). Then, the at-
tenuation corrections were made for the elevation-
correctedZDR and observedZH with the elevation-
corrected8DP using the method proposed by Jame-
son (1992), with the assumption of linear relationships
between specific attenuation (AH) and KDP and be-
tween differential attenuation (ADP) andKDP (Bringi
and Chandrasekar, 2001; Bringi et al., 1990).

The correctedZH at ranger is obtained from observed
reflectivity and8DP as follows:

ZH(r) = Zobs
H (r) +

0.07268

RF(8DP(θ))

{8DP(r) − 8DP(0)} , (5)

where the system8DP(0) is set to 0◦ with no loss of
generality. RF represents a reduction factor (Fig. 4),
which is a function of elevation angleθ . Note that the
reduction factor for8DP is the same with that forKDP
as long as the elevation angle is equal. In the derivation
of RF, we assumed the raindrop temperature of 20◦C,
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Fig. 4. Differential reflectivity (ZDR), specific differential phase
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angle at raindrop temperatures of 0 and 20◦C with shape parame-
ters (µ) of 0 and 5 for a modified gamma distribution with an axis
ratio of Brandes et al. (2002) and a median volume diameter (D0)
of 2 mm.

shape parameter (µ) of 5 and median diameter (D0) of
2 mm. These values were determined from disdrome-
ter measurements in heavy rain events on the ground,
although RF has very low dependencies of temperature
andµ (Fig. 4). Similarly, forZDR

ZDR(r) =
Zobs

DR(r)

RF(ZDR(θ))
+

0.01331

RF(8DP(θ))

{8DP(r) − 8DP(0)} . (6)

The correctedZV is derived fromZH andZDR.

4. The difference reflectivity,ZDP, was derived from the
correctedZH andZV using Eq. (1). The elevation an-
gle dependency ofZDP is quite small for low eleva-
tion angle observations (Fig. 4) but was considered in
the algorithm. The ice fraction values were obtained
from ZDP using theZH data at more than 40 dBZ
(∼ 12 mm h−1) to avoid the effects of small spherical
raindrops.

5. Rainfall rate (R) was estimated using a method based
on Gorgucci et al. (1994) but with parameters proposed
by Bringi and Chandrasekar (2001) from the corrected
ZDR andZH data, with an ice fraction of less than 0.2
and aZDR greater than 0.5 dB as

R(ZDR, ZH) = 0.0058× 100.091ZH × 10−0.209ZDR,

if f < 0.2 andZDR ≥ 0.5dB. (7)
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Note that an ice fraction of 0.2 corresponds to1Z of
1.0 dB in Eq. (2), which equals to the standard devia-
tion of the rain line (Fig. 3).

6. In the case that the ice fraction was more than or equal
to 0.2 orZDR was less than 0.5 dB, the rainfall rate was
derived from correctedZH values by using theR(ZH)

relationship (Hitschfeld and Bordan, 1954) defined as

R(ZH) =
(
0.005× ζH

) 1
1.6 , (8)

where

ζH = 100.1ZH , if ZDR < 0.5dB andf < 0.2 or (9)

ζH = 100.1ZH (1 − f ), if f ≥ 0.2. (10)

7. In the retrieval, additional quality control processes
that were employed during the analysis rejected rain-
fall rate data exceeding 300 mm h−1 as outliers.

Although we estimated vertical profiles of rainfall rate
with the algorithm mentioned above, the effect of air density
on the raindrop fall speed (Foote and du Toit, 1969), which
is one of the factors that determine rainfall rate aloft, was not
taken into account because we considered the rainfall rate
when the raindrops, particularly in the heavy rainfall region,
reached the ground.

2.3 Comparison with disdrometer

To evaluate the reliability of the rainfall rate estimated us-
ing the method mentioned above, we compared the esti-
mated rainfall rate with that observed by disdrometers (Par-
sivel) at Sekiyado and Kumagaya, which were located about
31.8 and 67.9 km west-northwest of the MRI site, respec-
tively (Fig. 7). The accuracy of the Parsivel measurements
is discussed in Appendix A. Comparisons were made using
data recorded on 7 July 2012. The radar-estimated rainfall
rate data available for the single point nearest to the Sekiyado
or Kumagaya station were used for the comparisons. To com-
pensate for the difference in observational heights (the radar
beam center observed precipitation about 400 m (923 m)
above the Sekiyado (Kumagaya) station), the times of the
radar measurements were adjusted to match with those of
the Parsivel using the empirical terminal velocity (Gunn and
Kinzer, 1949) of the median volume diameter (D0) of the
raindrops observed with the Parsivels.

Time series of the rainfall rate derived from the Parsivel
and the radar observations at Sekiyado (SYD) and Kumagaya
(KMG) are shown in Fig. 5. The thick line shows the 1 min
mean rainfall rate observed with the Parsivel, and the marks
indicate the rainfall rate estimated every 2 min fromR(ZH,
ZDR) using the methods proposed by Gorgucci et al. (1994)
with parameters of Bringi and Chandrasekar (2001), Illing-
worth and Thompson (2005), and Zrnić et al. (2000) along
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Figure 5. Rainfall rate comparisons between disdrometer measurements (solid line) and MRI 

C-band polarimetric radar estimations using the R(ZH, ZDR) method (circles and squares) and the 

R(ZH) relationship (crosses) at (a) Sekiyado (SYD) and (b) Kumagaya (KMG) surface stations from 

03:00 to 04:30 JST and from 02:00 to 03:30 JST on 7 July 2010, respectively. A blue ellipse in (b) 

surrounds outliers of rainfall rate estimated from the C-band radar at 02:22 JST.
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Fig. 5. Rainfall rate comparisons between disdrometer measure-
ments (solid line) and MRI C-band polarimetric radar estimations
using theR(ZH, ZDR) method (circles and squares) and theR(ZH)

relationship (crosses) at(a) Sekiyado (SYD) and(b) Kumagaya
(KMG) surface stations from 03:00 to 04:30 JST and from 02:00 to
03:30 JST on 7 July 2010, respectively. A blue ellipse in(b) sur-
rounds outliers of rainfall rate estimated from the C-band radar at
02:22 JST.

with an estimation from theR(ZH) relationship for refer-
ence. The algorithm described in Sect. 2.2 was used to derive
ZH andZDR for this comparison. The figure clearly shows
that the threeR(ZH, ZDR) methods outperform theR(ZH)

relationship, particularly in heavy rainfall.
The radar data at 02:40 JST at Kumagaya was rejected be-

cause of low quality of the data. On the other hand, the large
discrepancy at 02:22 JST was likely due to partially melted
hydrometeors. The effects of ice particles in the retrieval of
rainfall rate are discussed in appendix B. Note that even at
that time, the threeR(ZH, ZDR) methods outperformed the
R(ZH) relationship. A detailed error analysis (e.g. Thurai et
al., 2012) documenting the various factors influencing the
differences among the three methods is beyond the scope of
this study. However, the consistency ofR(ZH, ZDR) with the
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Figure 6. Horizontal distributions of the rainfall rate at 04:00 JST on 7 July 2010 obtained from operational 

radar observations with the color scale on the bottom right. A rectangle depicts the analytical area in Fig. 7, 

and the red open circle on the right edge of the rectangle indicates the location of the MRI. Two black ovals 

surround heavy convective regions.
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Fig. 6. Horizontal distributions of the rainfall rate at 04:00 JST on
7 July 2010 obtained from operational radar observations with the
color scale on the bottom right. A rectangle depicts the analytical
area in Fig. 7, and the red open circle on the right edge of the rect-
angle indicates the location of the MRI. Two black ovals surround
heavy convective regions.

Parsivel measurements provides confidence that the method
proposed by Gorgucci et al. (1994) is suitable for estimat-
ing rainfall rates for very short-term forecasting of localized
heavy rainfall events. The data used in the comparison were
actually recorded during a heavy local rainfall event, which
is analyzed in the next section.

3 Overview of a localized heavy rainfall event

Horizontal distributions of the rainfall rate from the radar
network operated by the Japan Meteorological Agency
at 04:00 JST (Japan Standard Time: JST = UTC+ 9 h) on
7 July 2010 are shown in Fig. 6. The radar-estimated rainfall
rate was derived by use of aR(ZH) relationship calibrated
by rain gauge measurements of the Automated Meteorologi-
cal Data Acquisition System (AMeDAS) operational surface
observation network. In Fig. 6, black ovals surround the lo-
calized heavy convective rain regions at the mature stage,
which are analyzed later, and a red rectangle indicates the
region of this study, on the edge of which the MRI is located.
The figure shows that the MRI was located between two con-
vective rain regions, with a maximum rainfall rate exceeding
80 mm h−1 to the north at this time. The localized heavy rain-
fall continued until about 05:30 JST around the MRI. How-
ever, about 1 h prior to this heavy rainfall event, no definite
echo was associated with localized heavy rainfall.

The radar reflectivity field observed by the MACS-POL
radar at 02:53 JST indicates some convective cells around
the MRI (Fig. 7). Most of the convective cells with reflec-
tivity greater than 50 dBZ were included in a large region of

Fig. 7. Attenuation-corrected radar reflectivity field of the MRI C-
band polarimetric radar at a 1.0◦ elevation angle at 02:53 JST on
7 July 2010. The color scale represents radar reflectivity.A and
B in the figure indicate convective cells, and the open circles with
a cross indicate the locations of the Sekiyado (SYD) and Kuma-
gaya (KMG) surface observation stations. The white circular band
on the right, at 19–20.5 km from the radar, is a deficit region result-
ing from the alternation of short- and long-pulse observations; the
red rectangle indicates the analytical area in Fig. 8.

rainfall expanding northwestwardly. However, at this stage,
it is very difficult to predict from the figure which convective
cell will develop most over time. Convective cellB, located
ahead of the large region of rainfall, actually developed most,
as shown later. We analyzed another convective cellA for
a reference because both cells were closely collocated and
fairly comparable in size and intensity. The corresponding
rainfall rate at this time is shown in Fig. 8a.

The evolution of the horizontal distribution of rainfall
rate near the surface is indicated in Fig. 8a–d. The rain-
fall rate was estimated from the MACS-POL radar using
the method described in Sect. 2.2. At 02:53 JST (Fig. 8a),
the rainfall rates associated with both cellsA and B were
small in intensity and size (see Fig. 11 for detail). How-
ever, about 8 min later, the rainfall rate associated withB

exceeded 210 mm h−1 (Fig. 8b). This was the onset of the lo-
calized heavy rainfall (also see Fig. 14 for detail). From this
point, cellB developed more rapidly and its size expanded
in a northeastward direction over time (Figs. 6 and 8b–d).
At 03:29 JST, cellB divided into two heavy rainfall regions,
B1 and B2 (Fig. 8d), and the former was associated with
the heavier rainfall. In contrast, cell A did not develop to a
great extent despite its initial similarity in size and location
to cellB. This result suggests that it is difficult in advance to
distinguish with conventional weather radar between a con-
vective cell that produces heavy rain and other cells in the
reflectivity and/or rainfall rate fields with low elevation angle
observations as previously mentioned because the horizontal
distributions do not provide sufficient information regarding
the progress of the rainfall. However, the vertical structure of
the rainfall rate over the convective cells may allow poten-
tially hazardous convective cells to be identified because the
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Fig. 8. MRI C-band radar rainfall rate estimation using differen-
tial reflectivity R(ZH, ZDR) observed at a 1.0◦ elevation angle at
(a) 02:53 JST,(b) 03:01 JST,(c) 03:09 JST, and(d) 03:29 JST on
7 July 2010. The color scale represents the rainfall rate.A andB in
the figure indicate convective rainfall cells. The cross symbol indi-
cates the location of the Sekiyado (SYD) surface observation sta-
tion. Blue rectangles representing a length of 50 km indicate the
distance-height analytical areas in Figs. 9 and A2, and black rectan-
gles in(a) and(b) indicate the analytical area in Figs. 10 and 11, and
Figs. 12–14, respectively. Ellipses in(d) surround the maturedA
andB (B1 andB2).
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Fig. 9. Distance-height cross section of rainfall rate and differen-
tial reflectivity (ZDR) superimposed over the attenuation-corrected-
rain-only reflectivity ofA (a–d)andB (e–h)along the analytic area
in Fig. 8. Black contours indicate estimated rainfall rates of 10, 30,
60 and 90 mm h−1, and white contours depict differential reflectiv-
ity at 2 and 4 dB, respectively. The observation time is shown in the
upper-left of each image.

heavy rainfall region could be formed aloft before the onset
of the heavy rain on the ground.

4 Vertical structures of the localized heavy rainfall

4.1 Distance–height cross section of the rainfall

The evolution of the distance–height cross section of the rain-
only reflectivity field along with the rainfall rate and differ-
ential reflectivity (ZDR) obtained from the MACS-POL radar
volumetric scans are shown in Fig. 9a–h. The reflectivity
and differential reflectivity are linearly averaged in the fig-
ure. The figure covers a 16 min period just prior to the onset
of heavy rainfall on the ground at 03:01 JST (Fig. 8b) at a
time resolution of 4 min. The freezing level was estimated
to about 4.3 km a.g.l. (above ground level) from the bright
band in the reflectivity field associated with stratiform rain
located southwest of the radar site at that time (not shown).
The bright band is a narrow horizontal layer of stronger radar
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Figure 10. Horizontal distribution of the vertical maximum intensity of differential reflectivity, 
VMI(ZDR), and the surface rainfall rate superimposed over the vertical maximum intensity of the 
rainfall rate, VMI(R), estimated from the MRI C-band polarimetric radar at 02:49 JST. Thick 
black contours indicate the surface rainfall rate at 3 mm h-1 and 18 mm h-1. Solid colored contours 
indicate VMI(ZDR) at altitudes above the freezing level from 0 dB with a contour interval of 3 dB, 
and dashed-blue contours depict VMI(ZDR) located at altitudes less than the freezing level at 0 dB. 
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Fig. 10. Horizontal distribution of the vertical maximum inten-
sity of differential reflectivity, VMI(ZDR), and the surface rain-
fall rate superimposed over the vertical maximum intensity of the
rainfall rate, VMI(R), estimated from the MRI C-band polarimet-
ric radar at 02:49 JST. Thick black contours indicate the surface
rainfall rate at 3 mm h−1 and 18 mm h−1. Solid colored contours
indicate VMI(ZDR) at altitudes above the freezing level from 0 dB
with a contour interval of 3 dB, and dashed-blue contours depict
VMI( ZDR) located at altitudes less than the freezing level at 0 dB.
Partial circles on the right indicate the observation deficit region at
an elevation angle of 0.5◦ for reference.

reflectivity, primarily in stratiform precipitation at the level
in the atmosphere where snow melts to form rain (Glickman,
2000). The bright band is usually centered about 100 m be-
low the 0◦C isotherm (White et al., 2002). Note that the dis-
tance in the figure does not indicate the range from the radar
site, as is shown in the so-called range-height indicator (RHI)
observations, but the horizontal distance from the southwest
ends of the 2 km-wide rectangles indicated in Fig. 8, showing
that both cellsA andB were advected in the rectangles east-
northeastwardly at a mean speed of 10 m s−1. This advection
may result in a shift of 1.6 km in distance at the 5 km altitude
in each panel because of the observation time lag for beams
with different elevation angles in the volume scans.

The reflectivity associated with cellA increased over time
(Fig. 9a–d) but did not exceed 45 dBZ in this period, except
at locations near the ground at 02:57 JST. Accordingly, the
corresponding rainfall rate aloft did not exceed 30 mm h−1.
In contrast, a high-reflectivity region (> 45 dBZ) was formed
at 02:49 JST associated with cellB at an altitude around
3 km (Fig. 9f). Accordingly, a few heavy rainfall regions
(> 60 mm h−1) were formed aloft at 02:53 JST (Fig. 9g),
8 min prior to the onset of heavy rainfall on the ground. The
high-reflectivity region aloft descended over time, expanded
in size and reached the lowest altitude of the observation
(Fig. 9g and h). The heavy rainfall region (> 60 mm h−1)
was located at an altitude of 1–2 km at 02:57 JST (Fig. 9h)
at a distance of 35 km and reached the lowest altitude at
03:01 JST (not shown), which agrees with the onset time of
the heavy local rainfall observed on the ground (Fig. 8b).

B

A

Figure 11. The horizontal distribution of VMI(ZDR) and the surface rainfall rate superimposed over 
VMI(R), estimated from the MRI C-band polarimetric radar at 02:53 JST. Thick black contours 
indicate surface rainfall rates of 3 mm h-1 and 18 mm h-1. Solid colored contours indicate VMI(ZDR) 
at altitudes above the freezing level from 0 dB with a contour interval of 3 dB (blue, orange, and red 
represent 0 dB, 3 dB, and 6 dB, respectively), and dashed-blue contours depict VMI(ZDR) located at 
altitudes lower than the freezing level at 0 dB. A blue rectangle indicates the analytical area in Figs. 
12-14.
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Fig. 11. The horizontal distribution of VMI(ZDR) and the surface
rainfall rate superimposed over VMI(R), estimated from the MRI
C-band polarimetric radar at 02:53 JST. Thick black contours indi-
cate surface rainfall rates of 3 and 18 mm h−1. Solid colored con-
tours indicate VMI(ZDR) at altitudes above the freezing level from
0 dB with a contour interval of 3 dB (blue, orange, and red repre-
sent 0, 3, and 6 dB, respectively), and dashed-blue contours depict
VMI( ZDR) located at altitudes lower than the freezing level at 0 dB.
A blue rectangle indicates the analytical area in Figs. 12–14.

Another region with a relatively high rainfall rate aloft at a
distance of 30 km at 02:57 JST (Fig. 9h) corresponds toB2
in Fig. 8d, as shown later. These results suggest that rainfall
rate aloft could be used to make a very short-term forecast of
rainfall. Note that contours of the rainfall rate are not always
parallel to those of reflectivity because the former depends
not only on the latter but also on the differential reflectivity
measurements, as in Eq. (7).

Another unique signature associated with cellB is a verti-
cal area of enhanced differential reflectivity extending above
the freezing level, i.e. a highZDR column (Fig. 9f–h). En-
hancedZDR values and a lowZH imply the presence of
oblate liquid drops because frozen raindrops cannot take such
largeZDR values even in the C-band (Fig. 2). Because the
farther above the 0◦C level the column extends, the more
vigorous the updraft is (Scharfenberg et al., 2005), this fig-
ure also shows that cellB developed with a strong upward
air motion, suggesting that cellB is potentially hazardous, as
it is likely to produce heavy rainfall. In the next section, we
focus on the horizontal distributions of the heavy rainfall rate
aloft and highZDR columns, because they are very important
to detect potentially hazardous clouds.

4.2 Vertical maximum intensity of rainfall rate and the
ZDR column

In order to analyze the horizontal distributions of the verti-
cal profiles of rainfall rate andZDR, we have resampled the
radar volume scan data from spherical coordinates to Carte-
sian grid data using a method proposed by Cressman (1959).
The vertical profiles were then used to obtain the vertical
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Figure 12. The horizontal distribution of VMI(ZDR) and the expected arrival time of the maximum 
rainfall on the ground superimposed over VMI(R) estimated from the MRI C-band polarimetric 
radar at 02:53 JST. Solid colored contours indicate VMI(ZDR) at altitudes above the freezing level 
from 0 dB with a contour interval of 3 dB, and dashed-blue contours depict VMI(ZDR) located at 
altitudes lower than the freezing level at 0 dB. Black contours with numbers indicate the arrival time 
of the maximum rainfall in minutes. C1 and C2 indicate the locations of high ZDR columns.
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Fig. 12.The horizontal distribution of VMI(ZDR) and the expected
arrival time of the maximum rainfall on the ground superimposed
over VMI(R) estimated from the MRI C-band polarimetric radar
at 02:53 JST. Solid colored contours indicate VMI(ZDR) at alti-
tudes above the freezing level from 0 dB with a contour interval
of 3 dB, and dashed-blue contours depict VMI(ZDR) located at al-
titudes lower than the freezing level at 0 dB. Black contours with
numbers indicate the arrival time of the maximum rainfall in min-
utes.C1 andC2 indicate the locations of highZDR columns.

maximum intensities of rainfall rate andZDR. The vertical
maximum intensity of the rainfall rate, VMI(R), is defined
as

VMI (R) = max
z1≤z≤z2

(R(z)), (11)

wherez1 andz2 are the lowest and highest altitudes for the
analyses. The corresponding altitude,z(Rmax), is defined as

z(Rmax) = arg max
z1≤z≤z2

(R(z)). (12)

The horizontal distribution of VMI(R) is shown in Fig. 10,
along with VMI(ZDR), and the surface rainfall rate at
02:49 JST when theZDR column was clearly analyzed in
the distance-height cross section (Fig. 9f). In the figure, the
VMI( ZDR) in the area of VMI(R) > 12 mm h−1 was plot-
ted to reduce the effect of noise. The solid-colored con-
tours depict the VMI(ZDR) at an altitude greater than or
equal to 4.5 km a.g.l. (i.e.z1 = 4.5 km: about 200 m higher
than the freezing level) to separate theZDR column from
the bright band. In contrast, the dashed-blue contours de-
pict the VMI(ZDR) of 0 dB located below the freezing level
(z(ZDRmax) < 4.3 km, z1 = z(Rmax)), and only the rainfall
rate below the bright band (z2 = 4.1 km) is considered for
the VMI(R). Note that the rainfall rate for the VMI in
the present study is derived from rain-only reflectivity and
ZDR, as in Eq. (7), i.e. VMI(R(Zrain, ZDR)) as opposed to
VMI( R(Zobs)) proposed by Vulpiani et al. (2012).

At that time, the difference in the rainfall rate on the
ground between cellsA andB was small; both were less than
5 mm h−1. However, the VMI(R) shows that cellB was asso-
ciated with a heavy rainfall region (> 60 mm h−1) in a small
area aloft. Moreover, two enhancedZDR regions associated
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Figure 13. The horizontal distribution of VMI(ZDR) and the expected arrival time of the maximum 
rainfall on the ground superimposed over VMI(R) estimated from the MRI C-band polarimetric 
radar at 02:57 JST. Solid colored contours indicate VMI(ZDR) at altitudes above the freezing level 
from 0 dB with a contour interval of 3 dB. Thin black contours with numbers show the expected 
arrival time of the maximum intensity rainfall in minutes; thick black contours indicate the 
estimated surface rainfall rate from 50 mm h-1 with a contour interval of 50 mm h-1. The arrow 
indicates the location of the maximum surface rainfall rate, and C1-C3 depict the locations of high 
ZDR columns.
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Fig. 13.The horizontal distribution of VMI(ZDR) and the expected
arrival time of the maximum rainfall on the ground superimposed
over VMI(R) estimated from the MRI C-band polarimetric radar at
02:57 JST. Solid colored contours indicate VMI(ZDR) at altitudes
above the freezing level from 0 dB with a contour interval of 3 dB.
Thin black contours with numbers show the expected arrival time
of the maximum intensity rainfall in minutes; thick black contours
indicate the estimated surface rainfall rate from 50 mm h−1 with a
contour interval of 50 mm h−1. The arrow indicates the location of
the maximum surface rainfall rate, andC1–C3 depict the locations
of highZDR columns.

with theZDR columns (Fig. 9f) were clearly analyzed at an
altitude higher than the freezing level above the heavy rain-
fall region, suggesting that cellB was associated with strong
updrafts that could rapidly develop convective cloud and in-
tensify the rainfall rate aloft over time. In contrast, cellA was
not associated with enhancedZDR regions at high altitude,
which is consistent with Fig. 9b.

Subsequent radar observations captured the formation and
evolution of localized heavy rainfall events. Four minutes
later (Fig. 11), the surface rainfall rates associated with
cells A andB estimated from the radar were still small in
both size and intensity (< 20 mm h−1). However, there are
quite distinct differences aloft. The VMI(R) clearly shows
that cellB is potentially more hazardous because a rainfall
rate greater than 160 mm h−1 is estimated over a large area
for cell B, but a rainfall rate of less than 60 mm h−1 is es-
timated for cellA over a small regions. This suggests that
the VMI(R) associated with cellB increased more than the
VMI( R) for cell A over a short time, as expected. The two
large regions of enhancedZDR associated with cellB at an
altitude higher than the freezing level were analyzed again
near the center of the high rainfall rate region aloft, which is
surrounded by contours of the VMI(ZDR) at 0 dB. Note that
cell A was not associated with either enhancedZDR or high
VMI( R) regions, suggesting that cellA was less hazardous
at this stage and unlikely to produce heavy rain. This result
is consistent with the evolution of the rainfall rate near the
ground (Fig. 8). The remainder of our analysis focuses on
cell B because it was more hazardous.
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Figure 14. The horizontal distribution of VMI(R) superimposed over the rainfall rate on the ground 
estimated from the MRI C-band polarimetric radar at 03:01 JST. The arrow indicates the location of 
the estimated maximum rainfall rate on the ground, and the colored contours indicate VMI(R) from 
50 mm h-1 with a contour interval of 50 mm h-1.
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Fig. 14.The horizontal distribution of VMI(R) superimposed over
the rainfall rate on the ground estimated from the MRI C-band po-
larimetric radar at 03:01 JST. The arrow indicates the location of
the estimated maximum rainfall rate on the ground, and the colored
contours indicate VMI(R) from 50 mm h−1 with a contour interval
of 50 mm h−1.

The maximum rainfall associated with cellB occurred at
the surface when raindrops at the altitude of the VMI(R)
reached the ground. The arrival time of the maximum rain-
fall could be estimated from the terminal velocity derived
from rain-only reflectivity (Joss and Waldvogel, 1970) and
the altitude of the VMI(R), i.e. z(Rmax). The expected lead
time of heavy rain and the VMI(ZDR) superimposed over the
VMI( R) at 02:53 JST are shown in Fig. 12. The effect of air
density on the terminal velocity of raindrops (Foote and du
Toit, 1969) was not considered when determining the lead
time because no sounding data were available at the time.

Figure 12 shows that very heavy rainfall (more than
150 mm h−1) was expected on the ground within 4 min in
very small areas in the southwest part of a high rainfall rate
region aloft associated with cellB. The peak VMI(R) value
between 2 and 6 min was as high as 190 mm h−1. Moreover,
two enhancedZDR (> 3 dB) regions corresponding to the
high-ZDR columns were apparent to the east (C1) and north-
east (C2), suggesting that cellB was still accompanied by
strong updrafts and the intense rainfall region was expanding
aloft northeastwardly.

Subsequent observations indicate that the intensified
VMI( R) region expanded northeastwardly for 4 min, and
very heavy rainfall on the ground over a very limited area
was observed (∼ 200 m in width for R > 100 mm h−1) at
02:57 JST, as expected (Fig. 13), and the rainfall rate on
the ground (192 mm h−1) was very close to expected
(190 mm h−1). Because some patches of heavy VMI(R)
(more than 150 mm h−1) formed northeast of the heavy rain-
fall aloft, a northeastward expansion of the heavy rainfall re-
gion on the ground should be expected. The peak value of
VMI( R) between 2 and 6 min was 214 mm h−1 at the time.
The high-ZDR column to the north,C2, decreased in size,
but C1 to the south was still distinct, and another high-ZDR
column,C3, was formed to the northeast. This suggests that

cell B was still active and expanding northeastwardly, which
is consistent with subsequent observations near the ground
(Fig. 8).

Note that another relatively intense VMI(R) region
(> 80 mm h−1) was observed to the west of the heavy surface
rainfall region. This region corresponds to another convective
cell B2 (Fig. 8d) at its developmental stage. Although a high-
ZDR column is not apparent in the figure,B2 was expected
to develop to some extent because an enhanced verticalZDR
region is present just below the freezing level (Fig. 9g and h).

Isochrones of the expected lead time of heavy rainfall and
the VMI(R) indicate that heavy rainfall (> 100 mm h−1) as-
sociated with cellB will occur on the ground over a large
area within 4 min. This estimation is confirmed by observa-
tions near the ground (Fig. 14), although the peak rainfall
rate on the ground (249 mm h−1) was slightly greater than ex-
pected (214 mm h−1). The surface rainfall rate shown in this
figure is the same as that in Fig. 8b. A rainfall rate greater
than 100 mm h−1 occurs over a large area (> 3 km in width),
as expected. This was the onset of the localized heavy rain-
fall. A large intensified VMI(R) region expanding northeast-
wardly aloft is shown in this figure, suggesting that heavy
rainfall on the ground will occur over a larger area within
a short time. In addition, the surface rainfall rate associated
with B2 was not as strong (∼ 60 mm h−1) at that time, but the
VMI( R) suggests that heavy rainfall (∼ 250 mm h−1) was oc-
curring in this region, which is also confirmed by subsequent
observations near the ground (Fig. 8d).

5 Concluding remarks

In this study we have demonstrated a very short-term rain-
fall forecast method to detect potentially hazardous convec-
tive clouds that produce localized heavy rainfall based on ac-
tual volumetric C-band polarimetric radar data. The effects of
hail in radar observation volumes have caused large errors in
short-term rainfall forecasts that rely only on radar reflectiv-
ity, although hail constitute an important part to generate high
rainfall rates. However, the method presented in this study is
immune to the high reflectivity associated with hail because
it includes a rainfall estimation algorithm that removes the
effect of ice particles based on polarimetric measurements.
In the retrieval of the rainfall rate, an attenuation correction
is also included using polarimetric measurements.

To evaluate the algorithm, we compared the rainfall rate
estimated from polarimetric radar measurements at the low-
est elevation angle with results obtained from two optical dis-
drometers on the ground, and we demonstrated that the rain-
fall rate estimated from polarimetric data agreed well with
the disdrometer results and was much more reliable than es-
timations derived from reflectivity alone. The high stability
of the solid-state transmitters of the radar also contributed
to this observation. Additionally, this stability enables the
radar with high integrity to undertake 4 min volumetric

Atmos. Meas. Tech., 6, 2741–2760, 2013 www.atmos-meas-tech.net/6/2741/2013/



A. Adachi et al.: Detection of potentially hazardous convective clouds 2753

scans, which is a sufficiently high time resolution to make
polarimetric measurements for convective clouds at the de-
velopment stage.

We analyzed two small cumulus cells that were located
close to each other, one of which developed and later pro-
duced heavy rainfall, whereas the other did not develop sig-
nificantly. The distance–height cross section of the rainfall
rate along the advection direction of the cells revealed the
formation of a heavy rainfall region aloft, which descended
over time and produced heavy rainfall. Moreover, a high ver-
tical maximum intensity of rainfall, VMI(R), was observed
aloft about 8 min prior to the onset of the heavy rainfall on
the ground. The arrival time of the maximum rainfall could
be estimated from polarimetric measurements, which agreed
fairly well with observations. The cumulus cell that did not
produce heavy rainfall did not show these characteristics.
These results suggest that the VMI(R) estimated from polari-
metric measurements can be used as an indicator to identify
potentially hazardous clouds.

We also demonstrated that polarimetric measurements,
particularly a high-ZDR column, can be used to identify haz-
ardous cloud. High-ZDR columns extending vertically be-
yond the freezing level were observed about 12 min prior to
the onset of heavy rainfall in the potentially hazardous cloud.
Additionally, because the intensity of updrafts increases with
the vertical extension of the column above the 0◦C level,
this can be another indicator used to identify potentially haz-
ardous clouds. The locations of the high-ZDR column may
also indicate the horizontal direction of cumulus develop-
ment because the convective cell extended toward the region
where the high-ZDR column was located in this study, al-
though the precise placement of high-ZDR columns relative
to the updraft differs from storm to storm (Scharfenberg et
al., 2005). The inclusion of Doppler data might provide ad-
ditional information to estimate the updraft and development
direction, which is the subject of future work.

It should be noted that VMI(R) is not conserved with
time but changes because of the microphysical processes of
raindrops, including condensation, coalescence, evaporation,
and breakup, in addition to horizontal advection. Thus, the
VMI( R) does not always agree well with the maximum rain-
fall rate observed on the ground. However, along with high-
ZDR columns, it can be used for identifying hazardous clouds
and thereby allowing ample time for evacuation and damage
mitigation, provided that this information can be conveyed to
the appropriate people in time. With the advent of informa-
tion technology, some early warnings have already been is-
sued immediately after alerts were given by short-term infor-
mation transfer systems, including emails to mobile phones,
and lives have been saved by providing critical seconds to
make preparations for earthquakes in Japan (JMA, 2007).

In summary, we confirm that the use of polarimetric radar
that provides reliable polarimetric data with high spatial and
time resolution is invaluable for disaster reduction. Clearly,
the detailed evolution of the VMI(R) would remain unseen if

the time resolution of the radar were coarse. In addition, the
clear identification of a high-ZDR column and its evolution
would not have been possible without the dual-polarized ca-
pability of the radar. It is very encouraging that the VMI(R)
andZDR columns associated with strong updrafts can serve
as predictors of localized heavy rainfall, and both appear to
be useful for disaster prevention in this case study.

Appendix A

Evaluation of the rainfall rate measured with Parsivel
disdrometer

Here, by re-calculating preset diameters provided by a Par-
sivel, we show that the error in measuring the rainfall rate
with Parsivel can be less than 1 mm h−1 even for a rainfall
rate in excess of 30 mm h−1.

The Parsivel is a laser-optical disdrometer, initially man-
ufactured by PM Tech (Pfinztal, Germany) and OTT
(Messtechnik, Germany) after 2004, that can measure the
size and fall speed of hydrometeors. The Parsivel disdrome-
ter can measure droplet sizes from 0.25 mm to about 25 mm,
with 32 classes of varying diameter intervals. The velocity
categories range from 0 m s−1 to 22.4 m s−1, with 32 classes
of varying intervals. Details of the instrument and the mea-
surement technique used to determine the size and velocity
of hydrometeors can be found in the literature (e.g., Battaglia
et al., 2010; Löffler-Mang and Joss, 2000; Tapiador et al.,
2010). We received an old-type Parsivel disdrometer from
PM Tech via Scintec in 2003. Two newer Parsivel disdrome-
ters were installed from OTT in 2009. Only the old type has
a power supply box on the support pillar. Three Parsivel dis-
drometers were located at the MRI field site, together with a
weighing (Pluvio2) precipitation gauge (Nemeth, 2008) and
an operational tipping-bucket rain gauge to validate the reli-
ability of the Parsivel data before comparisons with polari-
metric radar estimates. The validation was performed from
14 July to 11 August 2009. Five convective rain events with
a total rainfall of 75 mm were observed in the test period.
The data set for the validation consisted of 2278 1 min data
samples. The Pluvio data were used as a reference because
the uncertainty of this type of gauge in terms of relative er-
rors is reported to be less than that for tipping-bucket rain
gauges (Lanza et al., 2006). The total rainfall amount mea-
sured with the Pluvio agreed to within 1 mm with that from
the tipping-bucket rain gauge for all rain events in the test
period (Yamauchi et al., 2009).

The measurements from the Parsivel disdrometer included
the rainfall rate derived by an onboard application (ASDO),
but here, we calculated the rainfall rate from a 32 by 32 ma-
trix with size versus velocity elements measured with the

www.atmos-meas-tech.net/6/2741/2013/ Atmos. Meas. Tech., 6, 2741–2760, 2013



2754 A. Adachi et al.: Detection of potentially hazardous convective clouds

Fig. A1. Scatter plots of the rainfall rate for the Parsivel (P0 and
P1) vs. the Pluvio measurements. Rainfall rates derived from the
DSD measured byP1 are plotted as open circles using the preset di-
ameters (Dp) in (a) and the re-calculated diameters (De) in (b),
and rainfall data estimated by the on-board application software
(ASDO) with P0 are plotted as closed circles in both panels. The
data were averaged over 1 min. The lines represent linear regres-
sions for each set of data as shown in the legends on the bottom
with the correlation coefficients,R. The linear regressions for the
data estimated by ASDO onP1 andP2 are also plotted with dashed
lines for reference in(a).

Parsivel. The rainfall rate was calculated as follows:

R = 6× 10−4π

32∑
p=1

CpD3
p

Area· 1t
, (A1)

whereR is the rainfall rate (mm h−1), Dp is the mid-size of
thepth channel (mm),Cp is the number of drops of sizep,
Area is the measuring area (=0.027× 0.18 m2), and1t is
the sampling time (s).

Thurai et al. (2011) reported that the rainfall rate based
on the DSD calculated from a Parsivel tended to be overes-
timated when the rainfall rate was high (particularly above
30 mm h−1). This tendency of the Parsivel measurement
makes it unsuitable for evaluating the reliability of the rain-
fall estimation algorithm from polarimetric radar measure-
ments in heavy rainfall. We considered that this characteristic
of the Parsivel data likely results from the fact that the preset
Dp value provided by the Parsivel is not an equivalent vol-
umetric diameter but represents the measured physical max-
imum horizontal diameter of raindrops, as the discrepancy
between the two diameters increases with size and/or rain-
fall intensity. This is consistent with the characteristics of the
Parsivel data, althoughDp is defined as an equivalent volu-
metric diameter in appendix B of the Parsivel operating in-
structions. Physical maximum diameter is useful for studies
of snow (e.g., Battaglia et al., 2010), but it needs to be trans-
formed to equivalent volumetric diameter to calculate the
rainfall rate. To confirm this assumption, we calculated the
equivalent volumetric diameter (De) from Dp by use of the
axis ratio proposed by Beard and Chuang (1987) and recalcu-
lated the rainfall rate from the DSD using Eq. (A1) withDe
to compare with the Pluvio measurement. As a result of this
modification, for instance, the 12th diameter classification re-
duced from 1.625 to 1.599 mm, and the corresponding spread
of classes decreased from 0.250 to 0.237 mm, respectively.

Scatter diagrams comparing the Pluvio rainfall rate and
those from the Parsivel are shown in Fig. A1. The statistics
for the 1 min mean sample rainfall rate shown in Fig. A1 are
given in Table A1, along with the corresponding statistics for
the data with classified rainfall rates. Closed and open cir-
cles indicate data from the old (P0) and new (P1) Parsivel
disdrometers, respectively. TheP0 data were processed with
ASDO, but theP1 data were reprocessed with preset diam-
eters (Dp) and with calculated diameters (De) in Fig. A1a
and b, respectively. Only the data identified as “rain” by
ASDO were used. Furthermore, to eliminate spurious drops,
a matrix was used that rejected drops bigger than 8 mm and
drops falling at velocities that differed by more than 50 %
of the empirical fall speed (Gunn and Kinzer, 1949) based
on Sánchez (2006). Rainfall rate data exceeding 0 mm h−1

from the Parsivel are plotted in the figure, although the min-
imum rainfall rate of the Pluvio was 1.8 mm h−1. Note that
the number of observations for each instrument is the same
in each panel. However, the number of observations usingP1
was smaller than the number usingP0 in each panel because
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Table A1. Statistical values for the comparison of Parsivel (P0, P1, andP2) vs. Pluvio measurements of the (top) total points, (2nd row) bias,
(3rd row) standard deviation, and (bottom) root mean square of the rainfall rate differences. Rainfall rate data were derived from on-board
software (ASDO) and from the DSD with the preset diameters (Dp) and with the re-calculated equivalent volumetric diameters (De).

All R ≥ 1.8 R ≥ 10 R ≥ 20 R ≥ 25 R ≥ 30
data mm h−1 mm h−1 mm h−1 mm h−1 mm h−1

P0 2278 1689 296 124 75 53
Total points P1 1065 749 182 92 61 48

P2 2278 1689 296 124 75 53

P0 (ASDO) 0.0 −0.1 −0.2 −0.4 −0.3 0.7

P1 (ASDO) 1.5 2.1 5.2 6.8 9.0 10.2
P1 (Dp) 0.8 1.1 2.4 3.1 4.2 4.7

Bias (mm h−1) P1 (De) 0.3 0.3 0.1 −0.6 −0.5 −0.6

P2 (ASDO) 1.2 1.5 4.8 6.6 8.2 10.6
P2 (Dp) 0.6 0.7 2.4 2.8 3.4 5.0
P2 (De) 0.3 0.2 0.3 −0.6 −1.1 −0.4

P0 (ASDO) 3.0 3.5 7.6 10.2 12.3 13.8

P1 (ASDO) 5.7 6.7 12.4 15.4 17.8 19.2
P1 (Dp) 5.0 6.0 11.3 14.3 16.7 18.1

Standard deviation (mm h−1) P1 (De) 4.4 5.3 10.0 12.5 14.7 15.9

P2 (ASDO) 4.6 5.4 11.3 15.1 18.1 20.1
P2 (Dp) 4.1 4.7 10.3 14.0 16.9 19.1
P2 (De) 3.6 4.2 9.1 12.3 14.7 16.7

P0 (ASDO) 3.0 3.5 7.6 10.2 12.3 13.8

P1 (ASDO) 5.9 7.0 13.4 16.9 19.9 21.7
P1 (Dp) 5.1 6.0 11.5 14.6 17.2 18.7

Rms difference (mm h−1) P1 (De) 4.4 5.3 10.0 12.6 14.7 15.9

P2 (ASDO) 4.8 5.6 12.3 16.5 19.8 22.8
P2 (Dp) 4.1 4.8 10.6 14.3 17.2 19.7
P2 (De) 3.6 4.2 9.1 12.3 14.8 16.7

the operation of the former ceased on 23 August when it
was moved to Sekiyado for comparison with the polarimetric
radar. Thus, the data measured with another new Parsivel dis-
drometer (P2), whose number of observations was identical
to that ofP0, were also considered in the statistics. The linear
regressions ofP1 measurements processed by ASDO agreed
well with P2 measurements, as shown in Fig. A1a, suggest-
ing that the statistical characteristics of the two Parsivel mea-
surements were similar despite the difference in the num-
ber of observations. Other linear regressions forP2 measure-
ments were too close to those ofP1 to depict in the panels.

The linear regressions forP1 from both ASDO and the
DSD withDp (hereafter referred to as theDp method) indi-
cate a tendency for the Parsivel to overestimate (Fig. A1a),
as Thurai et al. (2011) also observed. However, it should be
noted that the linear regression forP0 with ASDO is almost
on the 1 : 1 line, suggesting that theP0 measurements agree
well with those of the Pluvio. This result suggests that there
is a difference in the system between the old and new Par-

sivel disdrometers. The observation that the old Parsivel has
good reliability agrees with the results of Sánchez (2006)
and Tokay et al. (2013). However, the linear regression for
the rainfall rate estimated from the DSD withDe (hereafter
the De method) derived fromP1 is also almost on the 1 : 1
line (Fig. A1b). This is reflected in the statistics for theDp

method versus theDe method in Table A1.
We computed several statistics to explore the relationship

between the time series of 1 min-averaged measurements
from the weighing precipitation gauge, Pluvio (Wi), and the
Parsivel (Pi). The statistics are based on the difference be-
tween the two platforms,Di = Pi-Wi . For the rainfall rate
from the new Parsivel disdrometers (P1 andP2), we used the
rate determined by ASDO, estimated from theDp method
and theDe method. Statistics for the rainfall rate from the
old Parsivel (P0) were processed with ASDO calculated as a
reference. The bias (systematic error) of the rainfall rate is

µD =
1

N

N∑
i=1

(Pi − Wi) =
1

N

N∑
i=1

Di, (A2)
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Figure A2. Distance-height cross-section of rainfall rate and ice fraction superimposed over the attenuation-
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shown in the upper-left of each image.

and the standard deviation (precision) is

σD =

[
1

N

N∑
i=1

(Di − µD)2

] 1
2

, (A3)

whereN is the number of observations. We also calculated
the root mean square of the rainfall rate differences as fol-
lows:

rms=

[
1

N

N∑
i=1

D2
i

] 1
2

. (A4)

The statistics for the 1 min mean sample rainfall rates are
given in Table A1, along with the corresponding statistics
for the data derived from the three Parsivels for different
methods and thresholds. The rainfall rates measured with
the Pluvio are used for the rainfall rate classifications with
a threshold value. Note that the minimum detectable rainfall
rate with the Pluvio was 1.8 mm h−1, but all the data identi-
fied as “rain” by ASDO were considered. However, Parsivel
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Fig. A3. Measurements at the Kumagaya station of(a) raindrop
size distribution at 02:22 JST averaged over 1 min by a Parsivel dis-
drometer and(b) time series of surface temperature from 00:00 to
04:00 JST on 7 July 2010. Lines with closed circles in(a) indi-
cate the observed drop size distribution with the corresponding
ZH, ZDR, D0, and rainfall rate on the upper right. The dashed
line depicts an exponential Marshall–Palmer fit at a rainfall rate of
19.3 mm h−1. The arrow in(b) indicates the time of DSD measure-
ment.

data that did not have corresponding Pluvio data for the same
time were removed before the comparison.

The standard deviation ofP1 increased with the threshold
of the rainfall rate for each method. The reason for this in-
crease may include the decrease in sample number with the
rainfall rate. The standard deviation of the rainfall rate de-
rived from theDe method was always lower than values de-
rived using the other method. The reason for the standard de-
viations derived using theDe method were lower than those
derived using theDp method may include the fact that the
class spread for eachDe was smaller than that forDp. These
tendencies can be seen in the root mean square of the rainfall
rate derived fromP1. However, the bias has very different
characteristics.

The biases ofP1, both with ASDO and theDp method,
increased with the threshold of rainfall rate. This systematic
tendency toward an increase in bias with rainfall rate was
consistent with the result of Thurai et al. (2011). In contrast,
the bias derived fromP1 with the De method did not vary
much with rainfall rate. The bias was less than 1 mm h−1

even for a rainfall rate greater than 30 mm h−1. This char-
acteristic agrees well with the bias ofP0 with ASDO, sug-
gesting thatP0 uses theDe method. It should be noted that
the differences betweenP1 andP2 for all statistical values
were less than 1.5 mm h−1 even for large statistical values.
This may suggest that theDe method is reliable for Parsivel
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disdrometers of this type. However, both the standard devi-
ations and the root mean square of the rainfall rate differ-
ences derived by theDe method were always larger than
those forP0 with ASDO. This is likely because ASDO with
P0 is equipped with a better quality-control matrix for the
DSD. Because theDe method is more accurate, we used
it to retrieve the rainfall rates both fromP1 and P2 in the
comparisons with the polarimetic radar estimations in this
study. For the comparison,P2 was moved to Kumagaya after
this validation.

Appendix B

Effects of ice hydrometeors on the estimation of rainfall
rate

As the rainfall estimation algorithm used in the proposed
method removes the effects of ice particles, it is insensitive
to the high reflectivity associated with dry hail, which is ran-
domly oriented and statistically isotropic. However, this al-
gorithm would not work well for oriented ice hydrometeors,
including wet/melting hail because the assumption on which
the algorithm is based becomes invalid. This appendix fo-
cuses on the effects of ice particles on the estimation of rain-
fall rate and discusses the influence of wet/melting hydrom-
eteors on the proposed method.

The evolution of the distance–height cross section of the
attenuation-corrected reflectivity field along with the rainfall
rate and ice fraction is shown in Fig. A2. This figure corre-
sponds to Fig. 9 except that the reflectivity is due not only to
rain but also to a mixture of ice hydrometeors and rain. More-
over, the rainfall rate estimation does not useZDR but relies
only on the attenuation-corrected reflectivity using Eq. (8).
This figure shows that ice hydrometeors were formed aloft
and fell in cell B. In contrast, cell A did not have a clear ice
particle signature, suggesting that only cell B was associated
with strong upward air motions that enabled hail/graupel to
grow, which is consistent with the analysis of the highZDR
columns in Sect. 4.2.

The reflectivity in cell B in Fig. A2 was larger than that in
Fig. 9 because of ice hydrometeors, which resulted in a much
heavier rainfall rate, especially at 02:57 JST (120 mm h−1

vs. 60 mm h−1, respectively). The overestimation due to ice
particles is one of the causes of the large errors in the re-
trieval of quantitative rainfall forecasts using vertically inte-
grated liquid water content (VIL) as mentioned in Sect. 1.
This result demonstrates the advantage of the proposed
method for improving very short-term precipitation forecast-
ing. However, this method cannot remove all of the effects of
ice hydrometeors.

The algorithm in the present study assumes a statistically
isotopic orientation of ice particles, which is valid for pure-
ice hail/graupel. However, this assumption is invalid for in-
completely melted hydrometeors, including wet/melting hail,

because they are likely to be anisotropic and oriented. Ice
hydrometeors are often recognized in drop size distribu-
tion (DSD) measurements. The DSD observed at the Ku-
magaya station at 02:22 JST on 7 July 2010 is shown in
Fig. A3a. Here, it corresponds to the period when a large
discrepancy was observed between radar estimates and dis-
drometer measurements at the Kumagaya station (Fig. 5b). It
is clear that the relatively high concentration of large drops
with De > 3 mm makes it difficult to fit the DSD with pos-
itive µ-values of a gamma distribution. As the shape of the
DSD tends to deviate from the gamma shape when the ice
phase is involved in precipitation (Bringi and Chandrasekar,
2001), this result suggests that ice hydrometeors were in-
cluded at this time, which was also supported by the corre-
sponding temperature decrease (Fig. A3b). The ice hydrome-
teors were likely wet/melting hail/graupel because the falling
velocities of dry hail/graupel (snow) are much faster (slower)
than that of rain, and quality control used for Parsivel mea-
surements should reject such data before the DSD calculation
(see Appendix A).

These results suggest that an overestimation due to
wet/melting hydrometeors may occur aloft even with the pro-
posed algorithm, although their occurrence could be less fre-
quent on the ground (Fig. 5). This overestimation may also
explain why the vertical maximum intensity of the rainfall
rate, VMI (R), does not always agree well with the max-
imum rainfall rate observed on the ground, in addition to
other factors described in Sec. 5. However, it is difficult to
remove the effect of wet/melting hail/graupel even for ad-
vanced algorithms with polarimetric radars (e.g., Picca and
Ryzhkov, 2011; Ryzhkov et al., 2009). Nevertheless, the
proposed algorithm is much more reliable than theR(ZH )

method (Figs. 5, 9 and A2) and can be used to identify
hazardous clouds.
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